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Nonlinear pulse propagation is investigated in a twin-core, birefringent rocking filter, a structure
for which the linear properties indicate the presence of two stop gaps. It is found that in two special
cases, the four nonlinear, coupled-mode equations that describe the system can be reduced to a
pair of equations that have been well studied. Consequently, two kinds of compound solitary waves
are obtained, which are generalizations of previous results: one that propagates down the structure
with equal power in each core and a solution that periodically couples completely from core to core

without degradation.
PACS number(s): 42.81.Dp, 42.65.Re, 42.81.Gs

L. INTRODUCTION

In a single-mode birefringent fiber, light launched
along a principal polarization axis maintains that po-
larization state. In this paper, an in-line birefringent
fiber rocking filter is considered, which is a structure
that rotates the polarization state of the optical field.
To achieve this, the fiber’s principal axes are periodically
rocked through a small angle, either by oscillating the
fiber preform during the drawing process [1] or by using
uv light [2] to externally irradiate the fiber periodically.
Since the birefringence beat length is wavelength depen-
dent, there is a resonant wavelength at which the beat
length is equal to the rocking filter twisting period. At
this wavelength there is complete coupling from one po-
larization mode to the other, while at other wavelengths
there is only partial coupling. As such, the power con-
version between the two orthogonally polarized modes is
wavelength dependent (see [1] for details of the operation
of a rocking filter).

Wabnitz [3] studied the effects of a Kerr nonlinearity on
group-velocity dispersion-free propagation of two orthog-
onally polarized, copropagating pulses in a resonant fiber
rocking filter. He found that, even though the material
dispersion is assumed negligible, there exist novel solitary
wave solutions, resonance solitons, in which nonlinearity
balances the dispersion due to the different group veloc-
ities of the two linearly coupled modes. Resonance soli-
tons are vector solitons, containing both polarizations,
which resist walkoff due to the different group velocities.

Recently, Psaila and de Sterke (hereafter referred to as
PdS) [4] extended the analysis of Wabnitz by including
a second birefringent, fiber rocking filter core. The two
cores are assumed to be identical, so that the propaga-
tion constants along each polarization axis are equiva-
lent. They also take the orientation of both cores such
that the principal axes are aligned along the z and y
directions. Hence, any coupling between orthogonally
polarized modes of different cores is neglected. They
found that the system of four nonlinear, coupled-mode
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equations can be reduced to a pair of coupled nonlinear
Schrédinger equations under suitable approximations.
The authors found two new types of four-component
solitons: one solution propagates simultaneously down
both cores with equal power in all four components and
the other solution periodically couples both polarization
modes completely from core to core. A directional cou-
pler exhibits similar behavior; however, there is only one
mode present in each core. It was shown in numeri-
cal simulations of the original nonlinear coupled-mode
equations that both types of solitons can propagate for
thousands of core-to-core couplings without appreciable
change in the pulse shape.

The solutions obtained by PdS are only valid for soli-
tons with small amplitude and with a velocity close to
the average group velocity of the two orthogonal polar-
izations. As will be explained more fully in Sec. II, these
solutions correspond to a pulse center wave vector just
inside the photonic stop gap. It is also indicated that in
this work the term gap means that evanescent field solu-
tions exist in a certain region of frequency—wave-vector
space. Also, note that stop gaps are not unique to rocking
filters but are a feature of any periodic structure [5]. In
the present paper, the results of PdS are generalized by
obtaining exact analytic solutions to the coupled-mode
equations themselves, without taking the limit where the
nonlinear Schrédinger equations are valid. These four-
component solutions are shown to be valid for pulse cen-
ter wave vectors anywhere in the stop gap, not just close
to the gap edge. These solutions are thus valid for much
larger pulse amplitudes and represent high-power gener-
alizations of those obtained by PdS.

The layout of this paper is as follows. In Sec. II the
coupled-mode equations are presented and the properties
of the linearized equations are analyzed to determine the
gap structure of the system. As will be shown, in general
there are two stop gaps and it is important to identify
exactly in which stop gap the center wave vector of the
pulse lies. In Sec. III, analytic solutions are obtained
for the nonlinear coupled-mode equations in two special
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cases. Numerical simulations of the two types of solu-
tions propagating down the twin-core rocking filter are
also presented in this section. In Sec. IV the question of
the stability of the solutions to certain perturbations is
discussed. Finally the results are discussed and conclu-
sions presented in Sec. V.

II. COUPLED-MODE EQUATIONS

In this section the coupled-mode equations for the
twin-core, birefringent, resonant fiber rocking filter are
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presented and the linear properties of the system are de-
termined. It is assumed that the two birefringent cores
are identical so that the propagation constants along each
polarization axis for each core are equal. Thus, taking
the principal axes to be along the z and y directions, we
have 81, = B2z = B, and Biy = B2y = By, where the sub-
scripts 1 and 2 indicate the two cores. This allows one
to neglect any coupling between orthogonally polarized
modes of different cores. The total electric field propa-
gating in the structure is written as

E(r,z,t) = {[A12(2,t)E1(r) + A2z (2,8)E22(r)] exp(iB:2)%
+ [A1y(2,8)E1y(r) + Azy(2,1)E2y(r)] exp(iBy2)¥ } exp(—iwt) + c.c., (1)

" where w is the mean optical frequency, the &,; (where n
=1, 2 and j = z,y) are the transverse modal field dis-
tributions, A,;(z,t) denotes the slowly varying complex
amplitudes of the four polarization modes, X, and y are
orthogonal unit vectors, and c.c. denotes the complex
conjugate.

To obtain evolution equations for the complex en-
velopes Apj(z,t), the electric field in Eq. (1) is substi-
tuted into the wave equation. Assuming a nonlinear Kerr
medium and that the cores are sufficiently separated so
that any mutual nonlinear interaction can be ignored, the
envelopes satisfy the coupled-mode equations (see, e.g.,
[4’ 6_8])

5z TV, ot

+ KgApy exp(—2ivz) + KeA3_ne
+ (mAwP + rb|Any|2) Ape =0,

(OAny i OAn,

5% v, ot + KgAng exp(42ivz) + Kc Az _ny

+(I‘a|Any|2 + I‘b|AM|2> Ay =0. (2)

For the coupled-mode equations in core 1 (2), one puts
n =1 (2). In Egs. (2), the V, , are the group velocities
in each polarization mode; 2v = k, — ky — 27/L,, with
L; the rocking filter twist period, is a detuning. In the
case of a resonant fiber rocking filter the twist period is
equal to the birefringence beat length L; and v = 0; «.
represents the linear core-to-core coupling; while I', and
Iy are the self- and cross-phase modulation constants,
respectively. Usually it is taken that I'; = 3I'y/2; how-
ever, in this work it is assumed the relationship between
'y and I'y is completely general. Finally, k4 is the linear
coupling coefficient due to the presence of the rocking fil-
ter. This coupling constant depends on the rocking filter
twist angle 6 and the modal birefringence An = |n, —ny|
[8] via
_ Anfw 0

= = — 3
Rg 4c 2Ly’ (3)

where c is the speed of light. Equation (3) indicates that
the coupling constant scales as the inverse of the beat
length, which is to be expected, since at resonance the
polarization mode rotates through an angle 26 per twist
period (see [9]). Note that the form of Eq. (2) indicates
that material dispersion has been ignored (see [10] for a
discussion of the conditions under which this is valid).

Equation (2) can be cast in simpler form if one makes
the substitution

Ang = R expliv{Fz + t/d — 2/(dV,) ), @)
where the upper (lower) sign refers to the j = z (y)

polarization and
1
T2

2V, V,

d = Vz-‘l-Vy, (5)

(V:c-l - Vy_1)7 va
represent the group-velocity mismatch and an average
group velocity, respectively. Substituting Eq. (4) in
Eq. (2), one obtains

OR e i ORns
7 5z + sz 8: + KgRny + KcR3—na
+ (Fa!an|2 + FbanyIZ) an = 07
OR, i IR,
TH T ar + Rt rRany

+ (Fa'Rnylz + Fbanw|2) Rny = 0‘ (6)

The analysis presented so far has been in laboratory
frame coordinates; however, it has been found to be more
convenient to change to a new coordinate frame moving
at the average group velocity of the the two orthogonally
polarized modes. We introduce the new coordinates

t—2/V,
= ™

so that 7 is a retarded time; then on examining Eq. (4)
it is seen that in the new coordinate system it can be
rewritten as

A =

¢ =z

nj expliv(r F ()], (8)
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where the upper (lower) sign refers to the j = z (y)
polarization mode. In this new coordinate frame, the four
coupled-mode equations Egs. (6) take their final form

OFne | .0Fns
1 ac +7«—6;"+Kg~7:ny+"3c]:3—nm
+ (TalFrzl? 4+ Lo Fry|?) Fne =0,
LOF, LOF,
2 acy —1 aTy + ng]:na: + ’icfii—ny

+ (Tal| Fryl® + To| Fnzl?) Fay = 0. (9)

In writing down these coupled-mode equations, the z-
polarized mode is taken to travel more slowly than the
y-polarized mode, i.e., V, < V,,.

Linear properties of coupled-mode equations

Before proceeding further with the nonlinear coupled-
mode equations, it is instructive to analyze the properties
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of the linear system of equations in both the laboratory
frame and the new coordinate frame. First, for the lab-
oratory frame, dropping the nonlinear terms in Egs. (6)
one obtains

IR i ORne

’ 8:z Vi 8: + KgRny + KcR3—nz =0,

OR i OR.

iTgm + 5 To g Roe + KRy =0 (10)
Yy

The next step is to find the linear supermodes of the
system, to which end the following Ansatz is employed:

Rnj = Snj exp[—i(Q2 — Q2)], (11)

where 2 and @ represent the frequency and wave number
of the slowly varying envelopes S,;. Inserting Eq. (11)
into Egs. (10) one obtains a set of four algebraic equations
for the S,;. For nontrivial solutions the determinant of
the matrix of coefficients must vanish; on solving the re-
sulting quartic equation as a function of £ one obtains
four real solutions given by

1
o)

(!‘Lc + Q)(Vz + Vy) £ \/(’Cc + Q)Z(VE - Vy)Z + 4’{’3V1’Vy

2

k)

of

(—he+ Q)(Va + Vi) £ \/(—he + Q) (Va — V,)? + 4K2V2V,

2

which correspond to the four hyperbolic branches of the
dispersion relation in frequency—wave-vector space. In
general, the solutions given in Eq. (12) indicate there
are two distinct stop gaps. However, unlike the case of
contrapropagating modes, where the stop gap is a gap
in frequency, in this case there is a gap in frequency and
wave vector. The existence of such gaps is well known
and is a feature of any system which involves the coupling
of copropagating modes (see [11] for a more complete
discussion of this issue).

In Fig. 1 are presented plots of the dispersion relations
in two parameter regimes: (a) k. < Kq; (b) ke > k4. The
diagram for k. = K4 is an obvious intermediate case and
is not presented. Given that in most practical applica-
tions the coupling between cores is on a scale of order mil-
limeters, while the coupling between polarization modes
is on a scale of order a meter, then k. > k4. Hence, it
is the diagram of Fig. 1(b) which is of most relevance in
this work. It is usually understood that a gap is a re-
gion without running wave solutions. Strictly, therefore,
the diagrams in Fig. 1 indicate there are no such regions.
But, in this paper, it is understood that a gap is a region
in which evanescent waves occur, as in the regions high-
lighted by the double bold arrows in Fig. 1. In this case
there are two distinct stop gaps.

The soliton solutions obtained by PdS in their Eq. (10)
correspond to modes with a wave vector Q 2 K. — Kq
and thus in order to make contact with these solutions
it is modes with wave vectors in the range k. — kg <
Q < K¢ + Kg that need to be considered. The solutions

given in Eq. (12) of PdS actually involve wave vectors
Q2 * kc — kg, ie., from both gap regions shown in
Fig. 1(b). Further discussion of these ideas is given in
Sec. V.

Now consider the new coordinate frame and contrast
the results to those obtained above. The linearized ver-
sion of Eq. (9) is

OFpe | 0Fna B

1 6<_ +Z—§;— +K/g]:ny +K'c73——n:c —0,

OF, OF,

i acy —1 8'ry + kgFne + KcFa_ny = 0. (13)
We make the Ansatz

F = Gexp[—i(U'T — Q'¢)], (14)

where the notation F indicates a vector with four com-
ponents; Fiz, Fiy, Faz, and Fay, and similarly for G.
Also the G,; do not depend on 7 or {. Using Eq. (14) in
Eq. (13) one obtains a set of algebraic equations for the
G,; which lead to the set of dispersion relations

QY = rek /27 + w2,
Q;(:z):'—lﬁ',c:t A/ 2+ K2, (15)

Introducing the Dirac ket |m) notation to denote the lin-
ear supermodes, then in the limit ' = 0, which is the
region of interest in this work, the supermodes corre-
sponding to the eigenvalues in Egs. (15) attain the simple
form
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FIG. 1. Diagram showing the stop gap structure of the
dispersion relation for a twin-core-fiber rocking filter in two
parameter regimes: (a) k. < Kg; (b) k¢ > k4. The bold
double-headed arrows in (b) indicate the wave vectors of the
solutions of interest.
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while the eigenvalues reduce to Q'ﬂ(:l) = Kk £ kg and

Q'i(z) = —kc £ Kg. Henceforth, it is understood that all
results in this paper pertain to the special case 2’ = 0.
In Fig. 2 is shown a plot of the dispersion relations
for the parameter regimes (a) k. > Kg; (b) Kc > Kgq.
In this new coordinate frame the dispersion curves have
been rotated counterclockwise compared to those in the

QI
Diagram showing the stop gap structure of the
dispersion relations for a twin-core-fiber rocking filter in the
parameter regimes (a) k. < kg and (b) K. > Kg, in the co-
ordinate system defined by Eq. (7). The bold double-headed
arrows in (b) indicate the wave vectors of the solutions of
interest.

FIG. 2.
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laboratory frame and the dispersion curves have sheared
as they have rotated. The key point to note here is that
the stop gaps are now purely a wave vector gap.

III. SOLUTIONS
OF COUPLED-MODE EQUATIONS

As mentioned earlier, the aim of this paper is to find a
generalization of the solutions of PdS beyond the nonlin-
ear Schrédinger limit, such that they are valid anywhere
in the stop gap, not just near the gap edge, and have
velocity anywhere between V, and V. In the Introduc-
tion it was indicated that PdS obtained two classes of
four-component solution: one solution propagates simul-
taneously down both cores with equal power in all four
components and the other solution periodically couples
completely from core to core. Hence, using the PdS solu-
tions for guidance, the nonlinear coupled-mode equations
[Egs. (9)] are analyzed in two special cases. In Sec. IIT A
solutions are obtained in which the z-polarized modes of
each core have the same power and similarly for the y-
polarized modes of each core. In Sec. III B solutions are
presented which periodically couple from core to core.

A. Solutions with equal power in each core

As Egs. (9) stand, it is not known whether they in-
tegrable and to find exact analytic solutions in general,
would be difficult. The number of possible solutions can
be restricted considerably by examining the form of the
solution of PdS which has equal power in all four modes.
This suggests that the nonlinear coupled-mode equations
be reduced by making the assumption

]'-lz=~7:2z:=}:z’ flyzj:Zy:fy' (17)

See Sec. IV for a discussion of the Ansatz. Substituting
Eq. (17) into Egs. (9) one finds the following system of
nonlinear coupled equations:

OF, 6.7-'

2 ac 6 Fy + £cFs
+ (Ta|Fz|? + To| Fy|?) Fo = 0,
OF, .OF,
7 ¢ or Fo + KTy
+ (Ta| Fy|? + To| Fo|?) Fy = 0. (18)

The terms proportional to . in Eq. (18) are just self-
coupling terms and can be removed by the simple trans-
formation

Foy = m,yeincca (19)

which leads to the final form for the two nonlinear
coupled-mode equations:

i OF, BF

"5 +ig= 4 RgFy + (Ta|Fo|? + To|Fy|?) F, =0,
.a;;,, a(,fy + kg Fy + (Tal Fy[? + Dol Fuf?) F, = 0. (20)
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It is seen that Egs. (20) are identical to those for a single-
core birefringent fiber rocking filter. Equations (20) are
in general nonintegrable and thus soliton solutions do
not exist. Aceves-and Wabnitz [12] found solitary wave
solutions to the coupled-mode equations for contraprop-
agating modes in a nonlinear periodic medium. The so-
lutions of [12] can be adapted to Egs. (20) by simply
interchanging the roles of space and time, which leads to
the following results (here the notation of de Sterke and
Sipe [7] is employed):

Fopy = a Gy e®), (21)

where G, , denote the solutions to the massive Thirring
model (see [12] for details), which are given by

f ~ sin(8)ei“sech(6 — i5/2),

gy = \/;A sln(é)elosech(e + 26/2) (22)

These solutions assume that the fiber rocking filter has
positive nonlinearity and that k4 is also positive. Fur-
ther, one has

0 = vKg(T — q¢)sin(d), o = yrg(gT — () cos(6),
(23)
where the dimensionless quantities ¢ and ~y are given by
1—A* 1

iTae T

thus v is the Lorentz factor. The final definitions are

q= (24)

a=(1+Ry+R)? (25)
and
26 —i67(R+—R_)/(1+R++R-)
ein(0) — _i (26)
e26 + eid ?
with
Lo (1£4)°
= — . 27
Re = or, 1-¢2 (27)

It is seen from Egs. (22) and Eq. (23) that these so-
lutions are characterized by two parameters: 0 < § < 7
and —1 < ¢ < 1. According to Eq. (23) and Eq. (24),
g (and thus A) determine the soliton’s velocity, while §
determines the position in the stop gap. Referring to
Fig. 1(b), the value § — 0 denotes a solution with center
wave vector near k. — kg, corresponding to a wide, low-
amplitude pulse (the low-intensity limit), while § — =
would correspond to a solution with center wave vector
near K.+ Kgq, corresponding to a narrow, large-amplitude
pulse (the high-intensity limit). The solitary wave travels
with a velocity

2V, Vy,
-q)+ Vy(l +9)

Ve(a) = (28)

Ve (1

in the laboratory frame, which takes on any value be-
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tween V, and V, [cf. Eq. (5)]. Note that Aceves and
Wabnitz [12] have verified by numerical simulation that
the solutions Egs. (21)—(27) do not have all the proper-
ties commonly required of solitons and are thus strictly
solitary waves.

Finally then, using Eq. (19) and Egs. (21)-(27),
the complete solution to the coupled-mode equations
[Egs. (9)] is given by

F,

Fr)= | 1| e, (29)
x
Fy

There are some important points to note about
Egs. (29): First, this represents an exact solution of the
coupled-mode equations given in Eq. (9). No approxima-
tions were made in deriving this result. Second, Eq. (29)
represents a four-component solitary wave that has equal
power in each core and propagates as one through the
rocking filter structure. It is the generalization of the
result obtained by PdS in their Eq. (10) to pulses with
wave vector lying anywhere in the stop gap delimited by
Ke — Kg < Q' < K¢ + Kqg (see Sec. V for details of this)
and with any velocity between V, and V,.

Another important point to note concerns solutions
which have very small detunings é and velocities ¢. It has
been shown by de Sterke and Sipe [7] that in this limit
the solutions reduce to the solutions given by the non-
linear Schrodinger equation. In this limit the solutions
are dominated by the |1) linear supermode [see Eq. (16)].
Hence this confirms that the solution given by Eq. (29)
represents high-power generalizations of those obtained
by PdS.

Numerical simulations solving the four coupled-mode
equations [Egs. (9)] which confirm the analytic results are
now discussed using the fields given in Eq. (29) along with
Eq. (21) as input to the fiber structure. The equations are
solved numerically using a generalization of the fourth-
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order collocation method described by [13].

In these simulations the core-to-core coupling is taken
to be k. = 10k4, although in this case the results are in-
dependent of the value of k.. The pulses are propagated
for 100 core-to-core coupling lengths for different velocity
(¢) and detuning (§) parameters. In Fig. 3 is presented
an example of one of the simulations using Eq. (29) as
input to Egs. (9). It is clearly seen that the input and
output intensities for each polarization mode in each core
are the same. Figure 3 shows a pulse for which the veloc-
ity (¢) is nonzero; in this case the output pulse (centered
at 7 = 5) is in advance of the position it would have with
qg = 0. The asymmetry between the polarization modes
is clearly evident in the figure. This behavior is read-
ily ascertained from Eqgs. (22), where it is seen that as
q — 1 the amplitude of the z-polarized mode increases,
while that of the y-polarized mode decreases, and vice
versa in the limit ¢ — —1.

B. Solutions which couple from core to core

In this section solutions are obtained in which both
polarization modes of a particular core completely couple
back and forth from core to core. On examination of
Eq. (12) of PdS, which corresponds to the solution which
couples from core to core on a length scale k1, it is seen
that the linear combinations

—7:11.:4:-7:2za fl'yi]:Zya (30)

are stationary in (. Hence, this implies the coupled-mode
equations should be rewritten in terms of the new vari-
ables

L1 =Fiz + Foo,
L3 =TFiy + Fay,

£2 = -7:1:1: - ]:Zma
Ly =Fiy — Fay. (31)

In terms of these variables, Egs. (9) become

oL az:
acl +ig— +rgls + KLy + [Fa(|£1|2£1 +2|L2|* L1 + L3LT) + To{(IL3]* + |La|*) L1 + (L£35L4 + L5L3)L2}] =0,
AL ,ac . . .
i5e iy trelithels _[r,,(|c3|2c3 +2[La*Ls + L3L3) + To{(1£a]* + |£2|") L3 + (£1L2 + L5£1)La}] =0,
OLs oL
agz i+ wgLs — Kl + [I‘ (I€2]La + 2|£1]7 L2 + LIL3) + To{(IL3|* + |La|*) L2 + (L5L4 + LL3)L1}] = 0,
6[’4 a£ 1 2 2k 2 * *
Yac 'W + gLy = Kela + [Ta(|Lal*La+ 2|La|* Lo+ L3L) + To{(I€1]* + |£2f*) Lo + (£1L2 + £3£1) L3} =0,

The terms proportional to . represent self-coupling and
can be removed by virtue of the transformations

£2,4 = L2’4 exp(—incC).
(33)

51,3 = L1,3 exp(incC),

(32)

On substituting Eq. (33) in Egs. (32), nonlinear terms
proportional to exp(+4ik.() are generated. In order to
simplify the analysis it is assumed here, as in PdS, that
the two cores of the fiber rocking filter are sufficiently
close so that the exponential factors are rapidly varying
and those nonlinear terms can be neglected. This leads
to the equations
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FIG. 3. Numerical simulation of Egs. (9) using Eq. (29) as

input. The key parameters used in the run are shown on the
plot. The pulse centered at 7 = 0 shows the initial intensity
profile of each polarization mode, while the pulse centered
at 7 = 5 shows the intensity profiles after 100 core-to-core
couplings. The units along the 7 axis are arbitrary. Other run
parameters are: effective modal area 13.6 um?, A = 1.55 pum,
n2 =31x107?2m? W-1,k, =7/2 m™}, k. = 5w m™'.

oL aL 1
za—cl +i— 4+ KoLz + = 1 [ o(|L1|% + 2|L2|?)L
+TY{(1Ls[? + | Laf?) Ly + L2L3>Lz}] o,
oL oL
O 8oyl + ) [r (L[ + 2|Laf?) Lo

+To{(|L1]? + |L2|?) L3 + L;Ll)L4}] =0, (34)

where the equations for L, 4 can be obtained by inter-
changing the subscripts 1 and 2 as well as the subscripts
3 and 4 in Egs. (34). Analysis of Eq. (12) of PdS leads
one to search for solutions of the form

L1 = Lz, L3 = L4 (35)

in Eq. (34). See Sec. IV for a discussion of this Ansatz.
Equation (35) reduces the system of four coupled nonlin-
ear equations to two coupled nonlinear equations given

by

aL 8L 3
3C1 +1 +f€gL3+ 2 (Pa]L1|? + To|Ls|?) Ly =0,
0L3 3L3

3
i%¢ —ige *Rela+ 7 (Tallsl® + To|Ls[*) Ls =0,
(36)

These equations are the same as those obtained in
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Eqgs. (20), except the nonlinearity is effectively a factor
4/3 smaller, so that any solution requires higher power
to excite it. As such, the solutions to Eqs. (36) are the
same as those given in Eqgs. (21)—(27) with the change
that the factor /k4/T'y is replaced by 1/4k,/3T,. From
Egs. (31) and Egs. (33) then a solution to the coupled-
mode equations [Eqgs. (9)] which couples from core to core
is

Ly cos(kc()
L3 cos(kc()
(&) iL31 sin(kc() |’ (37)
tL3 sin(k.()
where

Li=a :% — sin(6)e“sech(f — i6/2)e®,

Ly =—ay/ %A sin(8)e*“sech(d + i5/2)e™®) | (38)
b

and all other quantities are as defined in Egs. (23)—(27).

As with the solutions in the preceding section, these
solutions are strictly solitary waves, not solitons. How-
ever, unlike the other solutions, Egs. (37) and (38) are not
exact solutions of the coupled-mode equations [Egs. (9)]
since nonlinear terms proportional to exp(t4ix.() were
neglected in their derivation. It is seen from Eq. (37) that
the solutions couple from core to core on a length scale of
k- 1; a pulse of the form given by Egs. (38) launched into
the twin-core-fiber rocking filter initially has all its power
in one core and on traveling a distance { = w/(2k.) both
polarization modes completely couple over to the other
core and so on. Such behavior is nontrivial as one would
expect the pulse to disperse due to intensity-dependent
coupling effects and polarization dispersion. Also note
that in the limit of small detuning § and small velocity
q the solutions in Eq. (37) reduce to those obtained in
the nonlinear Schrédinger limit by PdS in their Eq. (12).
In this limit it is seen that the solution is dominated
by the beating of the |1) and |3) linear supermodes [see
Eq. (16)].

The existence and stability of these switching solutions
is verified in numerical simulations using the fields given
in Eq. (37) along with Eq. (38) as input to the origi-
nal coupled-mode equations [Egs. (9)]. In these simu-
lations the core-to-core coupling is taken to be given by
ke = 10kg4, which justifies the decision to omit the nonlin-
ear terms proportional to exp(+4ix.() in Egs. (34). The
initial conditions are such that fields are present in both
polarization modes of one core only. The pulses are prop-
agated over a distance of approximately 100 core-to-core
coupling lengths for different velocity (¢) and detuning
(0) parameters. Since the results obtained are qualita-
tively the same as those shown in Fig. 3 in the previous
section [the only difference is that the peak power in each
mode is a factor ,/4/3 larger] no results are presented
here.

The effect of reducing the size of the core-to-core cou-
pling k. was also investigated and it was found that even
for k. a factor of 100 smaller there was no discernible
difference in the results.
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An important feature to note from the Fig. 3 is that the
peak intensity of the fields is of order 300 W. The solution
obtained in Eq. (12) of PdS typically has a peak intensity
of the order of a few watts in the limit in which p and ¢
are small. This bears out the claim made in this paper
that the solutions given in Eq. (37) are generalizations of
the solutions of PdS to high powers.

IV. STABILITY OF SOLUTIONS

In this section, the question of the stability of the so-
lutions obtained in Sec. III is examined. First consider
the solutions given in Eq. (29); in regard to the system of
coupled-mode equations [Egs. (9)], the Ansatzin Eq. (17)
effectively reduces the phase space made up from Fi,,
Fiy, Fae, and Fpy from eight (as the fields are complex)
to four dimensions. An important question is whether
the solutions [Eq. (29)] are stable to perturbations which
would take them out of their subspace. No attempt has
been made to give an analytic answer to this question;
only numerical simulations were undertaken. A pertur-
bation of the form

Fog = .7:1;3(1 + 6), .Fzy = fly(l + 6) (39)

was applied to the solutions given in Eq. (29). The results
of the numerical simulations using Eq. (39) as input are
discussed below. Next consider the solutions given in
Eq. (37); in this case the perturbation given in Eq. (39)
is not appropriate. One must go back to Eq. (35) and
apply the perturbation at this stage. It can be shown
that a perturbation Ly = L1(1+¢€), Ly = L3(1 +¢€) in
Eq. (38) indicates that the fields F,; to be propagated
down the fiber structure be modified from those given in
Eq. (37) to :

flz=L1(1+6/2), f2z=—6L1/2,
-Fly = L3(1 + 6/2), ]:2y = —6L3/2. (40)

Numerical simulations of the coupled-mode equations
using Eq. (39) and Eq. (40) as input were performed for a
variety of detunings (4) and velocities (¢) and perturba-
tions were examined which were real or purely imaginary.
It is found for both types of solutions that for detunings
6 < m/2 and for a wide range of velocites the pulses are
stable to real perturbations as large as 25%, over dis-
tances of at least 250 core-to-core coupling lengths. It
is also found that the behavior for imaginary perturba-
tions is qualitatively the same as for real pertubations.
The situation for larger-amplitude pulses is more com-
plex and it unclear at this stage what conclusions can
be drawn as regards their stability. Figure 4 shows the
result of a simulation using Eq. (40) as input for a real
perturbation € = 0.2. In this case the peak intensities in
the £ mode of each core have been added and similarly
for the y mode in each core. This is done since in the
unperturbed system this combination is constant as the
pulse propagates down the fiber. It is clearly seen that,
although the peak of the intensity undergoes periodic os-
cillations, it remains stable as it propagates. Overall, it
seems that at least for smaller amplitude pulses § < 7/2
they are quite stable to perturbations which take them
out of their subspace.
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FIG. 4. Result of the numerical simulations of Egs. (9)

using the perturbed fields of Eq. (40) as input. The detuning,
velocity, and size of the perturbation used are shown on the
figure.

V. DISCUSSION AND CONCLUSION

In obtaining the solutions to the coupled-mode equa-
tions [Egs. (9)] given by Eq. (29) and Eq. (37) the crucial
step was the Ansatz given by either Eq. (17) or Eq. (35).
One may ask whether these Ansdtze are unique or do
other possibilities exist? As far as the authors are aware,
there appears to be only one other case, viz.,

]:1:1: = '—-7:2:07 -7:131 = _-7:23;, (41)

which also leads to a set of consistent coupled-mode equa-
tions which are identical to Egs. (20), except k. is re-
placed by —k.. Now consider the relation of the solutions
to the coupled-mode equations obtained in Eq. (29) and
Eq. (37) to the gap structures shown in Fig. 2(b). The
solutions of Eq. (29) correspond to a center wave vector
Ke — Kg < Q' < K¢ + kg. To verify this is the case, one
substitutes Eq. (29) along with Egs. (22) into Eq. (8)
and identifies the full wave-vector dependence. This out-
come is effectively forced on one by use of the Ansatz
given in Eq. (17). If on the other hand one used the
Ansatzof Eq. (41), the solutions obtained from the result-
ing coupled-mode equations would correspond to pulses
with center wave vector —k. — kg < Q' < —K¢ + Kg,
which corresponds to the stop gap on the left of Fig. 2(b).
As regards the analysis of PdS, this alternative solu-
tion would correspond to taking a; = 0 rather than as
in their Egs. (7). Finally note that, if the nonlinear-
ity were negative rather than positive, the solutions to
the coupled-mode equations would be such that the low-
intensity limit corresponds to the right hand edge of the
stop gaps shown in Fig. 2(b).

In the case of the solutions given by Eq. (37), analysis
of the full wave-vector dependence obtained by substi-
tuting Eq. (37) along with Egs. (38) into Eq. (8) shows
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that wave vectors from both stop gaps shown in Fig. 2(b)
are involved. This is to be expected, since in this case
it is the beating at half the difference of the two center
wave vectors (this difference is just 2x.) that causes the
coupling from core to core.

In conclusion, the properties of a twin-core, nonlinear
in-line, resonant fiber rocking filter have been examined.
It is shown that the system can have two stop gaps. The
nonlinear coupled-mode equations [Egs. (9)] which de-
scribe the system are solved in two special cases. In one
case, exact solutions are found which represent a four-
component solitary wave that propagates without degra-
dation down the fiber as a whole, with equal power in
each core. This solution is valid for a center wave vec-
tor anywhere in the stop gap indicated on the right of
Fig. 2(b) and for any velocity between V, and V,. The
other solution obtained represents a four-component soli-
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tary wave that periodically couples completely from core
to core as it propagagtes down the fiber. In this case wave
vectors from both gap regions shown in Fig. 2(b) are re-
quired. Both types of solution are found to propagate for
hundreds of core-to-core coupling lengths without degra-
dation and represent generalizations of the solutions ob-
tained by PdS.

Finally, we note that the solutions presented here can
be trivially extended to the case of contrapropagating
pulses in a twin-core Bragg grating structure by simply
interchanging the roles of time and space.
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